18.4: Electric Field- Concept of a Field Revisited (2024)

Table of Contents
Concept of a Field Summary Glossary
  1. Last updated
  2. Save as PDF
  • Page ID
    2544
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives

    By the end of this section, you will be able to:

    • Describe a force field and calculate the strength of an electric field due to a point charge.
    • Calculate the force exerted on a test charge by an electric field.
    • Explain the relationship between electrical force (F) on a test charge and electrical field strength (E).

    Contact forces, such as between a baseball and a bat, are explained on the small scale by the interaction of the charges in atoms and molecules in close proximity. They interact through forces that include the Coulomb force. Action at a distance is a force between objects that are not close enough for their atoms to “touch.” That is, they are separated by more than a few atomic diameters.

    For example, a charged rubber comb attracts neutral bits of paper from a distance via the Coulomb force. It is very useful to think of an object being surrounded in space by a force field. The force field carries the force to another object (called a test object) some distance away.

    Concept of a Field

    A field is a way of conceptualizing and mapping the force that surrounds any object and acts on another object at a distance without apparent physical connection. For example, the gravitational field surrounding the earth (and all other masses) represents the gravitational force that would be experienced if another mass were placed at a given point within the field.

    In the same way, the Coulomb force field surrounding any charge extends throughout space. Using Coulomb’s law, \(F=k|q_{1}q_{2}|/r^{2}\), its magnitude is given by the equation \(F=k|qQ|/r^{2}\), for a point charge (a particle having a charge \(Q\)) acting on a test charge \(q\) at a distance \(r\) (Figure \(\PageIndex{1}\)). Both the magnitude and direction of the Coulomb force field depend on \(Q\) and the test charge \(q\).

    18.4: Electric Field- Concept of a Field Revisited (2)

    To simplify things, we would prefer to have a field that depends only on \(Q\) and not on the test charge \(q\). The electric field is defined in such a manner that it represents only the charge creating it and is unique at every point in space. Specifically, the electric field \(E\) is defined to be the ratio of the Coulomb force to the test charge:

    \[\mathbf{E}=\dfrac{\mathbf{F}}{q},\]

    where \(\mathbf{F}\) is the electrostatic force (or Coulomb force) exerted on a positive test charge \(q\). It is understood that \(\mathbf{E}\) is in the same direction as \(\mathbf{F}\). It is also assumed that \(q\) is so small that it does not alter the charge distribution creating the electric field. The units of electric field are newtons per coulomb (N/C). If the electric field is known, then the electrostatic force on any charge \(q\) is simply obtained by multiplying charge times electric field, or \(\mathbf{F}=q\mathbf{E}\). Consider the electric field due to a point charge \(Q\). According to Coulomb’s law, the force it exerts on a test charge \(q\) is \(F=k|qQ|/r^{2}\). Thus the magnitude of the electric field, \(E\), for a point charge is

    \[E=|\dfrac{F}{q}|=k|\dfrac{qQ}{qr^{2}}|=k\dfrac{|Q|}{r^{2}}.\]

    Since the test charge cancels, we see that

    \[E=k\dfrac{|Q|}{r^{2}}.\]

    The electric field is thus seen to depend only on the charge \(Q\) and the distance \(r\); it is completely independent of the test charge\(q\).

    Example \(\PageIndex{1}\): Calculating the Electric Field of a Point Charge

    Calculate the strength and direction of the electric field \(E\) due to a point charge of 2.00 nC (nano-Coulombs) at a distance of 5.00 mm from the charge.

    Strategy

    We can find the electric field created by a point charge by using the equation \(E=kQ/r^{2}\).

    Solution

    Here \(Q=2.00\times 10^{-9}C\) and \(r=5.00\times 10^{-3}m\). Entering those values into the above equation gives

    \[ \begin{align*} E&=k\dfrac{Q}{r^{2}} \\[5pt] &= (8.99\times 10^{9} N\cdot m^{2}/C^{2})\times \dfrac{(2.00\times 10^{-9}C)}{(5.00\times 10^{-3}m)^{2}} \\[5pt] &= 7.19\times 10^{5} N/C. \end{align*}\]

    Discussion

    This electric field strength is the same at any point 5.00 mm away from the charge \(Q\) that creates the field. It is positive, meaning that it has a direction pointing away from the charge \(Q\).

    Example \(\PageIndex{2}\): Calculating the Force Exerted on a Point Charge by an Electric Field

    What force does the electric field found in the previous example exert on a point charge of\(-0.250\mu C\)?

    Strategy

    Since we know the electric field strength and the charge in the field, the force on that charge can be calculated using the definition of electric field \(\mathbf{E}=\mathbf{F}/q\) rearranged to \(\mathbf{F}=q\mathbf{E}\).

    Solution

    The magnitude of the force on a charge \(q=-.250\mu C\) exerted by a field of strength \(E=7.20\times 10^{5} N/C\) is thus,

    \[ \begin{align*} F &=-qE \\[5pt] &= (0.250\times 10^{-6}C)(7.20\times 10^{5} N/C) \\[5pt] &=0.180N. \end{align*}\]

    Because \(q\) is negative, the force is directed opposite to the direction of the field.

    Discussion

    The force is attractive, as expected for unlike charges. (The field was created by a positive charge and here acts on a negative charge.) The charges in this example are typical of common static electricity, and the modest attractive force obtained is similar to forces experienced in static cling and similar situations.

    PHET EXPLORATIONS: ELECTRIC FIELD OF DREAMS

    Play ball! Add charges to the Field of Dreams and see how they react to the electric field. Turn on a background electric field and adjust the direction and magnitude.

    18.4: Electric Field- Concept of a Field Revisited (3)

    Summary

    • The electrostatic force field surrounding a charged object extends out into space in all directions.
    • The electrostatic force exerted by a point charge on a test charge at a distance\(r\) depends on the charge of both charges, as well as the distance between the two.
    • The electric field \(\mathbf{E}\) is defined to be \(\mathbf{E}=\dfrac{\mathbf{F}}{q},\) where \(\mathbf{F}\) is the Coulomb or electrostatic force exerted on a small positive test charge \(q\). \(\mathbf{E}\) has units of N/C.
    • The magnitude of the electric field \(\mathbf{E}\) created by a point charge \(Q\) is \(\mathbf{E}=k\dfrac{|Q|}{r^{2}}.\) where \(r\) is the distance from \(Q\). The electric field \(\mathbf{E}\) is a vector and fields due to multiple charges add like vectors.

    Glossary

    field
    a map of the amount and direction of a force acting on other objects, extending out into space
    point charge
    A charged particle, designated Q, generating an electric field
    test charge
    A particle (designated q) with either a positive or negative charge set down within an electric field generated by a point charge
    18.4: Electric Field- Concept of a Field Revisited (2024)
    Top Articles
    Your guide to selling a car on Craigslist | The Car Connection
    Proposal for AUeReqDI Mappings to AU eRequesting - HL7 Australia — FHIR Work Group
    Funny Roblox Id Codes 2023
    Golden Abyss - Chapter 5 - Lunar_Angel
    Www.paystubportal.com/7-11 Login
    Joi Databas
    DPhil Research - List of thesis titles
    Shs Games 1V1 Lol
    Evil Dead Rise Showtimes Near Massena Movieplex
    Steamy Afternoon With Handsome Fernando
    Which aspects are important in sales |#1 Prospection
    Detroit Lions 50 50
    18443168434
    Newgate Honda
    Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
    Grace Caroline Deepfake
    978-0137606801
    Nwi Arrests Lake County
    Justified Official Series Trailer
    London Ups Store
    Mflwer
    Spergo Net Worth 2022
    Costco Gas Foster City
    Obsidian Guard's Cutlass
    Marvon McCray Update: Did He Pass Away Or Is He Still Alive?
    Mccain Agportal
    Amih Stocktwits
    Fort Mccoy Fire Map
    Uta Kinesiology Advising
    Kcwi Tv Schedule
    What Time Does Walmart Auto Center Open
    Nesb Routing Number
    Olivia Maeday
    Random Bibleizer
    10 Best Places to Go and Things to Know for a Trip to the Hickory M...
    Black Lion Backpack And Glider Voucher
    Gopher Carts Pensacola Beach
    Duke University Transcript Request
    Lincoln Financial Field, section 110, row 4, home of Philadelphia Eagles, Temple Owls, page 1
    Jambus - Definition, Beispiele, Merkmale, Wirkung
    Ark Unlock All Skins Command
    Craigslist Red Wing Mn
    D3 Boards
    Jail View Sumter
    Nancy Pazelt Obituary
    Birmingham City Schools Clever Login
    Thotsbook Com
    Funkin' on the Heights
    Vci Classified Paducah
    Www Pig11 Net
    Ty Glass Sentenced
    Latest Posts
    Article information

    Author: Patricia Veum II

    Last Updated:

    Views: 6439

    Rating: 4.3 / 5 (44 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Patricia Veum II

    Birthday: 1994-12-16

    Address: 2064 Little Summit, Goldieton, MS 97651-0862

    Phone: +6873952696715

    Job: Principal Officer

    Hobby: Rafting, Cabaret, Candle making, Jigsaw puzzles, Inline skating, Magic, Graffiti

    Introduction: My name is Patricia Veum II, I am a vast, combative, smiling, famous, inexpensive, zealous, sparkling person who loves writing and wants to share my knowledge and understanding with you.